Chemosensory functions for pulmonary neuroendocrine cells.
نویسندگان
چکیده
The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary pulmonary neuroendocrine cells (PNECs), which are morphologically distinct and physiologically undefined, might serve as chemosensory cells in human airways. This conclusion is based on our finding that some human PNECs expressed members of the olfactory receptor (OR) family in vivo and in primary cell culture, and are anatomically positioned in the airway epithelium to respond to inhaled volatile chemicals. Furthermore, apical exposure of primary-culture human airway epithelial cells to volatile chemicals decreased levels of serotonin in PNECs, and the led to the release of the neuropeptide calcitonin gene-related peptide (CGRP) to the basal medium. These data suggest that volatile stimulation of PNECs can lead to the secretion of factors that are capable of stimulating the corresponding receptors in the lung epithelium. We also found that the distribution of serotonin and neuropeptide receptors may change in chronic obstructive pulmonary disease, suggesting that increased PNEC-dependent chemoresponsiveness might contribute to the altered sensitivity to volatile stimuli in this disease. Together, these data indicate that human airway epithelia harbor specialized cells that respond to volatile chemical stimuli, and may help to explain clinical observations of odorant-induced airway reactions.
منابع مشابه
Neuroendocrine differentiation, neuropeptides, and neprilysin.
Pulmonary neuroendocrine cells exhibit highly specialized differentiation with a neurosecretory phenotype and significant bioactive peptide hormone content. In addition to these functions, pulmonary neuroendocrine cells have been demonstrated to act as chemoreceptors for hypoxia (1). Specific pulmonary disorders, including bronchopulmonary dysplasia, bronchiectasis, cystic fibrosis, pulmonary h...
متن کاملDifferentiation of Murine Pulmonary Neuroendocrine Cells Human Neuroendocrine Lung Carcinomas and Mediates the Growth Factor Independence-1 Is Expressed in Primary
Human small cell lung cancers might be derived from pulmonary cells with a neuroendocrine phenotype. They are driven to proliferate by autocrine and paracrine neuropeptide growth factor stimulation. The molecular basis of the neuroendocrine phenotype of lung carcinomas is relatively unknown. The Achaete-Scute Homologue-1 (ASH1) transcription factor is critically required for the formation of pu...
متن کاملGrowth factor independence-1 is expressed in primary human neuroendocrine lung carcinomas and mediates the differentiation of murine pulmonary neuroendocrine cells.
Human small cell lung cancers might be derived from pulmonary cells with a neuroendocrine phenotype. They are driven to proliferate by autocrine and paracrine neuropeptide growth factor stimulation. The molecular basis of the neuroendocrine phenotype of lung carcinomas is relatively unknown. The Achaete-Scute Homologue-1 (ASH1) transcription factor is critically required for the formation of pu...
متن کاملInsm1 controls the differentiation of pulmonary neuroendocrine cells by repressing Hes1.
Epithelial progenitor cells of the lung generate all cell types of the mature airway epithelium, among them the neuroendocrine cells. The balance between formation of pulmonary neuroendocrine and non-neuroendocrine cells is controlled by Notch signaling. The Notch target gene Hes1 is expressed by non-neuroendocrine and absent in neuroendocrine cells. The transcription factor Ascl1 is expressed ...
متن کاملIn Vitro Study of Hyaluronic Acid Based Scaffolds and Its Effect on Cartilage Regeneration
Recently, it has been proven that cartilage healing is difficult. The most commonly used treatments are autogenously cartilage grafting and allogeneic bone grafting, but grafts cannot fully meet treatment goals because of source, price, safety, and other concerns. Thus, a combination of biological materials and tissue engineering technology has become a recent trend in studies. Among the studie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2014